Imaging dedicated and multifunctional neural circuits generating distinct behaviors.
نویسندگان
چکیده
Central pattern generators (CPGs) control both swimming and crawling in the medicinal leech. To investigate whether the neurons comprising these two CPGs are dedicated or multifunctional, we used voltage-sensitive dye imaging to record from approximately 80% of the approximately 400 neurons in a segmental ganglion. By eliciting swimming and crawling in the same preparation, we were able to identify neurons that participated in either of the two rhythms, or both. More than twice as many cells oscillated in-phase with crawling (188) compared with swimming (90). Surprisingly, 84 of the cells (93%) that oscillated with swimming also oscillated with crawling. We then characterized two previously unidentified interneurons, cells 255 and 257, that had interesting activity patterns based on the imaging results. Cell 255 proved to be a multifunctional interneuron that oscillates with and can perturb both rhythms, whereas cell 257 is an interneuron dedicated to crawling. These results show that the swimming and crawling networks are driven by both multifunctional and dedicated circuitry.
منابع مشابه
Homology and homoplasy of swimming behaviors and neural circuits in the Nudipleura (Mollusca, Gastropoda, Opisthobranchia).
How neural circuit evolution relates to behavioral evolution is not well understood. Here the relationship between neural circuits and behavior is explored with respect to the swimming behaviors of the Nudipleura (Mollusca, Gastropoda, Opithobranchia). Nudipleura is a diverse monophyletic clade of sea slugs among which only a small percentage of species can swim. Swimming falls into a limited n...
متن کاملNeuropsychological and Neuropsychiatric Deficits Following Traumatic Brain Injury: Common Patterns and Neuropathological Mechanisms
Traumatic Brain Injury (TBI) in all degrees of injury severity mainly induces deviant cognitive, emotional and behavioral alterations that lead to their respective disorders. This brief overview strives to define the variables that determine the risk of occurrence of these disorders and to describe the common patterns of these disorders and their relevant neuropathogenetic mechanism(s). In addi...
متن کاملRoles for Multifunctional and Specialized Spinal Interneurons During Motor Pattern Generation in Tadpoles, Zebrafish Larvae, and Turtles
The hindbrain and spinal cord can produce multiple forms of locomotion, escape, and withdrawal behaviors and (in limbed vertebrates) site-specific scratching. Until recently, the prevailing view was that the same classes of central nervous system neurons generate multiple kinds of movements, either through reconfiguration of a single, shared network or through an increase in the number of neuro...
متن کاملThe power of the AC-DC circuit: Operating principles of a simple multi-functional transcriptional network motif
Genetically encoded regulatory circuits control biological function. A major focus of systems biology is to understand these circuits by establishing the relationship between specific structures and functions. Of special interest are multifunctional circuits that are capable of performing distinct behaviors without changing their topology. A particularly simple example of such a system is the A...
متن کاملNeuronal Computations Made Visible with Subcellular Resolution
Sensory information is gradually processed within dedicated neural circuits to generate specific behaviors. In this issue, Yang et al. push technology boundaries to measure both voltage and calcium signals from subcellular compartments of genetically defined interconnected neurons and shed light on local neural computations critical for motion detection.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 42 شماره
صفحات -
تاریخ انتشار 2006